Verifying Networked Programs Using a Model Checker Extension

o

Abstract

Model checking
schedule.

inds failures in software by exploring every possible execution
atil recently it has been mainly applied on stand-alone applications.

opose an extension for a Java model checker to support networked
programs. It contains a cache module, which captures data streams between a
target process and a peer process. Captured data are replayed by the cache
module when a duplicate request is sent. This demonstration shows how we
found a defect in a WebDAV client with a model checker and our extension.

Background

Software model checking verifies software by exploring every possible schedule
whereas software testing only executes the program through one thread
schedule for each run. Java PathFinder (JPF), a model checker for Java, is used
as a base model checker for our development. It includes its own Java Virtual
Machine, which explores all thread schedules of the program. Although it is
designed to verify only a single process at a time, we extend its functionalities
via several mechanisms to support multi-process networked applications.

O O
O O
O O © O

O 00 OO0 00 O

Testing covers only one of
the possible schedules for
each run.

Model checking executes and
covers all possible schedules.

Concept of Cache

Cache can be used as a proxy to the real external process. Net-iocache, our JPF
extension, makes use of requests and responses in the past and sends already
known responses back to the target application instead of dispatching request
messages to the peer process. As a result, peer processes do not become aware
of the target application being driven by the model checker. If the request is
not cached, the I/O-cache will physically send the request to the peer, wait for
a response, and remember it.

[cache miss]
propagate

GO

request

[cache hit]

response v
response
—>
Store the new trace.
Output a new O ‘—‘—I
data stream
O 00 °
—
Move the pointer back.
Backtrack O ‘ ‘ |
1 2 3

O OO

Forward to a

new state b\ O O '

References

[1] C. Artho, W. Leungwattanakit, M. Hagiya, and Y. Tanabe. Efficient model checking of networked applications. In Proc. TOOLS EUROPE 2008, volume 19 of LNBIP, pages 22-40, Zurich, Switzerland, 2008.
[2] C. Artho, W. Leungwattanakit, M. Hagiya, and Y. Tanabe. Tools and techniques for model checking networked programs. In Proc. SNPD 2008, Phuket, Thailand, 2008. IEEE.

[3] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

[4] Y. Y. Goland. Webdav: A network protocol for remote collaborative authoring on the web. In Proc. of the Sixth European Conf. on Computer Supported Cooperative Work, pages 12-16,

[5] B. Holmes. A Simple PROPFIND/PROPPATCH Client, 2000.

[6] K. Havelund and T. Pressburger. Model checking Java programs using Java PathFinder. International Journal on Software Tools for Technology Transfer, 2(4):366-381

[7] NASA Ames Research Center. Java PathFinder 4 documentation, 2006.

O ‘ ‘ \ Replay the cached data.

Architecture

* Implemented as a JPF extension.

* Network-related classes are rewritten as abstract classes.

* Abstract output stream redirects outputs of the SUT to the cache.

* Abstract input stream accepts iutputs from the cache.

* Listener signals the cache on the state transition event.

* Cache saves/restores pointer positions and the number of active connections.

JPE Core

Java Virtual Machine

Experiments

* Platform
* 8-core Mac Pro workstation
* 16GB physical memory
* Ubuntu 8.04 and JPF 4 (revision 1109)
* Tested programs
* Alphabet server/client
* HI'TP server/client
* Multipart file downloading tool
* Partial results
* Alphabet client: 4 threads/2 characters, ~33 min/1.6M states
* Alphabet server: 7 threads/1 character, ~50 min/2.2M states

Error Trace of a WebDAYV Client

gov.nasa.jpf.jvm.NoUncaughtExceptionsProperty
NullPointerException: calling 'hyber()V’ on null object
at StreamDemultiplexor.init(StreamDemultiplexor. java)
(stack trace omitted)

transition #3 thread: 0

ThreadChoiceFromSet {>main,SocketTimeout}
StreamDemultiplexor : timer = t.setTimeout(
(some transitions omitted)

transition #153 thread: 1
ThreadChoiceFromSet {main,>SocketTimeout}
StreamDemultiplexor.java:435 : timer = null;
StreamDemultiplexor.java:438 : demuxList.remove(this)
transition #154 thread: O

ThreadChoiceFromSet {>main,SocketTimeout}
StreamDemultiplexor.java:138 : timer.hyber()
HTTPConnection.java:2268 : requestlList. remove(req)
(some transitions omitted)

snapshot #1

thread index=1,name=SocketTimeout,status=RUNNING
call stack:

at StreamDemultiplexor.close(StreamDemultiplexor)

at StreamDemultiplexor.markForClose(StreamDemultiplexor)
at SocketTimeout.run(StreamDemultiplexor)
——————————————————————————————————— search finished

NullPointerException

Call a method on a
null object.

timer is assigned.
timer is null.

Call method
on null object.

Call stack

The client starts with two threads, main thread and SocketTimeout thread. Any
inactive stream will be automatically closed by the timeout thread after a
certain period. In transition #3, the main thread executes method init and
starts counting time by method setTimeout. In the error scenario, before
method hyber is called, thread SocketTimeout gets its turn and continues
running until time runs out. The countdown thread closes the corresponding
stream and socket, making variable timer become null (transition #153). This
causes hyber method call on timer to fail at transition #154.

Tool Download

* Java PathFinder subversion repository
* https://javapathfinder.svn.sourceforge.net/svnroot/javapathfinder/trunk

Springer.

University of Tokyo Watcharin Leungwattanakit, Masami Hagiya, Yoshinori Tanabe

RCIS/AIST Cyrille Artho

Chiba University Mitsuharu Yamamoto

